Q.P. Code: 18EE0211

Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech III Year I Semester Supplementary Examinations August-2021

CONTROL SYSTEMS

(Common to ECE & EEE)

Time: 3 hours

1

PART-A

Max. Marks: 60

5M

	(Answer all the Questions $5 \times 2 = 10$ Marks)	
a	What is block diagram? What are the basic components of block diagram?	2M
b	Define accelerating error constant.	2M
c	What is the necessary condition for stability?	2M
d	Define phase margin.	2M
e	Define state variable and Write the state equation.	2M

PART-B

(Answer all Five Units $5 \ge 10 = 50$ Marks)

UNIT-I

2 a Write the differential equations governing the mechanical rotational system shown 5M in the figure and find transfer function.

- b Compare open loop and closed loop control systems based on different aspects? 5M
 - OR
- **3 a** List the properties of signal flow graph?
 - b Using mason gain formula find the transfer function C/R for the signal flow graph 5M shown in figure.

- 4 a List out the time domain specifications and derive the expressions for Rise time, 5M Peak time and Peak overshoot?
 - **b** Find all the time domain specifications for a unity feedback control system whose **5M** open loop transfer function is given by

$$G(S) = \frac{25}{S(S+5)}$$
OR

- **5** a Define steady state error. Derive the static error components for Type 0, Type 1 & 5M Type 2 systems.
 - **b** A For servo mechanisms with open loop transfer function given below what type of **5M** input signal give rise to a constant steady state error and calculate their values?

$$G(s)H(s) = \frac{20(s+2)}{s(s+1)(s+3)}$$

Page 1 of 2

Q.P. Code: 18EE0211

7

9

b

UNIT-III

6 a Determine the range of K for stability of unity feedback system whose open loop 5M transfer function is given below using Routh's stability criterion.

G(s) H(s) =
$$\frac{K}{S(S+1)(S+2)}$$

b With the help of Routh's stability criterion find the stability of the following systems 5M represented by the characteristic equation $9s^5 - 20s^4 + 10s^3 - s^2 - 9s - 10 = 0$.

OR

a Sketch the root locus of the system whose open loop transfer function is

G(s) H(s) =
$$\frac{\kappa}{S(S^2+4S+13)}$$

4M

5M

6M

8 a Sketch the polar plot for the open loop transfer function of a unity feedback system 6M is given below .Determine Gain Margin & Phase Margin.

$$G(s) = \frac{1}{S(1+S)(1+2S)}$$

b Given $\xi = 0.7$ and $\omega n = 10$ rad/sec. Calculate resonant peak, resonant frequency and 4M bandwidth.

	OR	
a	Obtain the transfer function of Lag Compensator and draw pole-zero plot?	5 M
b	write the procedure for design of Lag Compensator using Bode plot?	5 M
	UNIT-V	
a	State the properties of State Transition Matrix.	5 M

10	a	State the properties of State	e Transiti	ion	Matrix.			
	b	Diagonalize the following s	system m	natr	ix			
			$A = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$	6 0 2	$\begin{pmatrix} -5\\2\\4 \end{pmatrix}$			
					OR			

11	a	Find state variable representation of an armature controlled D.C.motor?	5M
	b	A state model of a system is given as:	5 M

$$\dot{X} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{pmatrix} X + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} U \text{ and } Y = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} X$$

Explain the procedure for constructing root locus.

Determine: (i) The Eigen Values. (ii) The State Transition Matrix.

END

R18